MATH 590: QUIZ 1 SOLUTIONS

Name:

1. Consider $\left(\mathbb{R}^{+}\right)^{2}$ with addition $\left(x_{1}, x_{2}\right)+^{\prime}\left(y_{1}, y_{2}\right):=\left(x_{1} y_{1}, x_{2} y_{2}\right)$ and scalar multiplication given by $c *\left(x_{1}, x_{2}\right):=\left(x_{1}^{c}, x_{2}^{c}\right)$, for $c \in \mathbb{R}$. Verify the two versions of the distributive property for V. (4 points)

Solution. First suppose $c, d \in \mathbb{R}$ and $x, y) \in \mathbb{R}^{2}$. Then :

$$
(c+d) *(x, y)=\left(x^{c+d}, y^{c+d}\right)=\left(x^{c} x^{d}, y^{c} y^{d}\right)=\left(x^{c}, y^{c}\right)+^{\prime}\left(x^{d}, y^{d}\right)=c *(x, y)+^{\prime} d *(x, y) .
$$

Now suppose $c \in \mathbb{R}$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. Then:

$$
\begin{aligned}
c *\left\{\left(x_{1}, y_{1}\right)+^{\prime}\left(x_{2}, y_{2}\right)\right\} & =c *\left(x_{1} x_{2}, y_{2} y_{2}\right) \\
& =\left(\left(x_{1} x_{2}\right)^{c},\left(y_{1} y_{2}\right)^{c}\right) \\
& =\left(x_{1}^{c} x_{2}^{c}, y_{1}^{c} y_{2}^{c}\right) \\
& =\left(x_{1}^{c}, y_{1}^{c}\right)+^{\prime}\left(x_{2}^{c}, y_{2}^{c}\right) \\
& =c *\left(x_{1}, y_{1}\right)+c *\left(x_{2}, y_{2}\right)
\end{aligned}
$$

2. Let V be a vector space over \mathbb{R} and $W \subseteq V$ a subset. Define what it means for W to be a subspace of V. (3 points)

Solution. W is a subspace of V if : (i) For all $w_{1}, w_{2} \in W, w_{1}+w_{2} \in W$ and (ii) For all $\lambda \in \mathbb{R}$ and $w \in W$, $\lambda w \in W$.
3. Describe all of the subspaces of \mathbb{R}^{3}.

Solution. The subspaces of \mathbb{R}^{3} are: $\{\overrightarrow{0}\}$, lines through the origin, planes through the origin, and \mathbb{R}^{3}.

