MATH 590: QUIZ 1 SOLUTIONS

Name:

1. Consider $(\mathbb{R}^+)^2$ with addition $(x_1, x_2) + (y_1, y_2) := (x_1y_1, x_2y_2)$ and scalar multiplication given by $c * (x_1, x_2) := (x_1^c, x_2^c)$, for $c \in \mathbb{R}$. Verify the two versions of the distributive property for V. (4 points)

Solution. First suppose $c, d \in \mathbb{R}$ and $x, y) \in \mathbb{R}^2$. Then :

 $(c+d) * (x,y) = (x^{c+d}, y^{c+d}) = (x^c x^d, y^c y^d) = (x^c, y^c) + (x^d, y^d) = c * (x,y) + d * (x,y).$ Now suppose $c \in \mathbb{R}$ and $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. Then:

$$c * \{(x_1, y_1) + '(x_2, y_2)\} = c * (x_1 x_2, y_2 y_2)$$

= $((x_1 x_2)^c, (y_1 y_2)^c)$
= $(x_1^c x_2^c, y_1^c y_2^c)$
= $(x_1^c, y_1^c) + '(x_2^c, y_2^c)$
= $c * (x_1, y_1) + c * (x_2, y_2).$

2. Let V be a vector space over \mathbb{R} and $W \subseteq V$ a subset. Define what it means for W to be a *subspace* of V. (3 points)

Solution. W is a subspace of V if : (i) For all $w_1, w_2 \in W$, $w_1 + w_2 \in W$ and (ii) For all $\lambda \in \mathbb{R}$ and $w \in W$, $\lambda w \in W$.

3. Describe all of the subspaces of \mathbb{R}^3 .

Solution. The subspaces of \mathbb{R}^3 are: $\{\vec{0}\}$, lines through the origin, planes through the origin, and \mathbb{R}^3 .